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We consider the critical behavior of the random g-state Potts model in the large-g limit with different types
of disorder leading to either the nonfrustrated random ferromagnet regime or the frustrated spin-glass regime.
The model is studied on the diamond hierarchical lattice for which the Migdal-Kadanoff real-space renormal-
ization is exact. It is shown to have a ferromagnetic and a paramagnetic phase and the phase transition is
controlled by four different fixed points. The state of the system is characterized by the distribution of the
interface free energy P(I) which is shown to satisfy different integral equations at the fixed points. By
numerical integration we have obtained the corresponding stable laws of nonlinear combination of random
numbers and obtained numerically exact values for the critical exponents.
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I. INTRODUCTION

Despite continuous efforts, several properties of many
body systems in the presence of quenched disorder and frus-
tration are still not well understood. Notoriously difficult sys-
tems are spin glasses, in particular, in finite dimensions and
with finite-range interactions.! One basic problem of our un-
derstanding in this field of research is the lack of exact so-
lutions for nontrivial models. Exceptions in this respect are
such systems in which disorder fluctuations are fully domi-
nant and the properties of the system are governed by an
infinite-disorder fixed point.” This happens, among others for
random quantum spin chains and for a class of stochastic
models with quenched disorder. If, however, the properties of
the system are controlled by a conventional (finite-disorder)
random fixed point, such as for classical spin glasses, the
exact results are scarce.

In these cases, in order to obtain more accurate informa-
tion, one often considers hierarchical lattices® in which the
Migdal-Kadanoff renormalization* can be performed exactly.
For simple models, such as for directed polymers, one can
notice a simple, although nonlinear relation between the
original and the transformed random energies and one can
derive closed integral equations between the corresponding
distribution functions, which can then be studied by various
methods.>® However for spin models, such as the random-
bond Ising model, it is generally not possible to write renor-
malization equations directly for the distribution functions.
In these cases one can treat numerically large finite samples
exactly and average the obtained results over quenched
disorder.”"'> Although bringing very accurate numerical re-
sults, this type of treatment is still not exact and, as usually
happens in random systems, the source of inaccuracy comes
from the averaging process over quenched disorder. In such
calculations one cannot, for example, decide about the uni-
versality of the fixed points, i.e., if the critical singularities
are independent or not of the form of the initial distribution
of the disorder.
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In this paper we consider such a spin model, the g-state
random Potts model'® in the large-¢g limit, for which the
Migdal-Kadanoff renormalization leads to closed integral
equations in terms of the distribution functions. In this re-
spect our results are comparable with those obtained for di-
rected polymers on hierarchical lattices.’ The g-state Potts
model, as it is well known, is equivalent for g=2 to the Ising
model. On a hypercubic lattice for sufficiently large g the
transition turns to first order whereas on a hierarchical lattice
the transition for any finite g stays of second order but the
critical exponents are g dependent.'*

Properties of the Potts model with random ferromagnetic
and antiferromagnetic couplings (*J model) have been stud-
ied numerically to some extent. On the cubic lattice a spin-
glass (SG) phase has been identified for g=3 (Ref. 15) but
the SG phase is absent for large enough value of ¢, as ob-
served for g= 10.1° On the square lattice, the dimension be-
ing below the critical one, d.>2, there is no SG phase, and
the phase diagram consists only of the ferromagnetic and the
paramagnetic phases. The transition between these phases
has been studied numerically for g=3 where it is found to be
controlled by four different fixed points'” (see also in Ref.
18). The model has been also considered on the diamond
hierarchical lattice with  random ferromagnetic
couplings.'-2?

Here we extend these studies by including frustration, too,
and investigate the large-g limit. We note that in the disor-
dered case the large-g limit is generally not singular,?>>* the
critical behavior is qualitatively similar to that of finite ¢ and
also the critical exponents are smoothly saturating as
g — .2 We mention that it has been recently suggested that,
in the large-¢ limit, the Potts model is a plausible model for
supercooled liquids. This is indeed the case within the mean-
field approach?® but it seems to be completely different for
the nearest-neighbor model.!>!6

To consider the large-g limit of the model leads to tech-
nical simplifications, at least for random ferromagnetic cou-
plings. The high-temperature series expansion of the model
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FIG. 1. (Color online) First steps of the construction of the
hierarchical diamond lattice with b=2.

is dominated by a single diagram, the properties of which
have been studied in 2d and 3d by combinatorial optimiza-
tion methods.?> This type of simplification is valid for the
hierarchical lattice, too, but for this lattice the exact renor-
malization holds for antiferromagnetic couplings, too. As we
will see the renormalized parameters in this limit are ex-
pressed as simple but nonlinear combinations of the original
parameters, such as the interface free energy. This makes it
possible to write integral equations for the distribution func-
tions which are studied by various methods.

The structure of the paper is the following: the g-state
Potts model and its Migdal-Kadanoff renormalization in the
large-q limit is presented in Sec. II. The phase diagram of the
model is calculated by the numerical-pool method in Sec. III
whereas the properties of the fixed points are obtained
through numerical integration in Sec. IV. Our results are dis-
cussed in Sec. V and details of the derivation of the integral
equations at the fixed points are given in the Appendices.

II. MODEL AND RENORMALIZATION

We consider the g-state Potts model defined by the Hamil-
tonian

H=-2 J;80,0) (1)
(i)

in terms of the Potts-variables o;=1,2,...,q, associated with
the sites indexed by i of the lattice. Here the summation runs
over nearest-neighbor pairs and the couplings J;; are inde-
pendent and identically distributed random numbers, which
can be either positive or negative. We consider the large-g
limit, in which case it is convenient to rescale the
temperature as T'=TIn ¢ so that eA=gP where B'=1/T'
(kg=1) and consider the high-temperature series expansion
of the model, in which the partition function Z is dominated
by one diagram

Z = ¢%+ subleading terms (2)
q—%
which is related to the free energy through ¢=-8'F.

In this paper the Potts model is considered on the dia-
mond hierarchical lattice, which is constructed recursively
from a single link corresponding to the generation n=0. (see
Fig. 1). The generation n=1 consists of b branches in paral-
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lel, each branch containing two bonds in series. The next
generation n=2 is obtained by applying the same transfor-
mation to each bond of the generation n=1. At generation n,
the length L, measured by the number of bonds between the
two extreme sites A and B is L,,=2", and the total number of
bonds is

In(2b)

B, =(2b)" = LYY with d,(b)= ——,
n ( ) n w1 eff( ) In2

3)
where d,;/(b) represents some effective dimensionality.

In the following we consider two different boundary con-
ditions and denote the partition function as Zrll’l and Zi’z,
when the two extreme sites A and B are fixed in the same

state or in different states, respectively. Their ratio is given
by

1 Ainter
== 4)

where F"'=F12_F!l is the interface free energy. The ratio
x,, obeys the recursion equation'®-?!

ﬁ x5 + (g = 1) )
_xn = N N .
+ il K 4 xi?) +(g-2)

n

Now we consider the large-g limit and keeping in mind that
the partition function is given by one dominant term, see Eq.
(2), we obtain the following recursion for the scaled interface
free energy, 1,=B'F)"":

b

Ly = 2 O, 1027, (6)

i=1
Here the auxiliary function is

@[[(1)’](2)]

0 if I+ 1,,<1and [,, <1
11, i 1, 41, <1 and I, >1
41, -1 if I, +1,,>1 and I,, <1
Lin if I, +1,,>1 and [, >1

(7)
with I,,,,=max(I'V,1?) and I,,;,=min(I'V,I®). The initial
condition is given by

1y =pBJ, ®)

where J; is the value of the ith coupling.

Note that in the large-¢g limit the recursion relation in Eq.
(5) are simplified and there is now a direct relation in Egs.
(6) and (7) between the scaled interface free energies. This
recursion relation involves a somewhat complicated nonlin-
ear combination of random variables and we are interested in
the stable law for their distribution function.

III. PHASE DIAGRAM
A. Nonrandom system

In the pure case the recursion relation simplifies
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0 if0<I,=<1/2
Lo =1bQ2L,-1) if 12<I,<1. (9)
bl, if 1,>1

It has a fixed point at /,=b/(2b—1). The phase transition at
this point is of first order. The dominant diagram for /<1,
consists of isolated points, whereas for />1. the dominant
diagram is fully connected and there is a phase coexistence at
I=I.

B. Random system: Numerical study

For the random case we consider a diamond lattice with
branching number b=2, i.e., with an effective dimension
d,;r=2. First we perform a numerical investigation using a
continuous boxlike distribution of the couplings

1
F L <
l-p

1-p (10)
0 otherwise.

PW) =

with p=1 and such that the mean value of the couplings is

given by
- 1[1+
J=—(—p>. (11)
2\1-p

For p>0 all couplings are random ferromagnetic and in the
limit p— 1 we have the pure system. For p <0 there are also
negative bonds, their fraction is increasing with decreasing p.
For p=-1 the distribution is symmetric with zero mean and
standard deviation 1/v12. In the numerical calculations we
have used the so-called pool method. Starting with N random
variables taken from the original distribution in Eq. (10), we
generate a new set of NV variables through renormalization at
a fixed temperature, 7', using Eqgs. (6) and (7). These are the
elements of the pool at the first generation, which are then
used as input for the next renormalization step. We check the
properties of the pool at each renormalization by calculating
the distribution of the scaled interface free energy, its aver-
age and its variance. In practice we have used a pool of N
=5X10° elements and we went up to n~70—80 iterations.

1. Phases

At a given point of the phase diagram, (p,T’), the renor-
malized parameters display two different behaviors, which
are governed by two trivial fixed points. In the paramagnetic
phase the scaled interface free energy renormalizes to zero,
whereas in the ferromagnetic phase it goes to infinity. We
note that in the large-¢g limit there is no zero-temperature
spin-glass phase, contrary to the known results for g=2 and
g=3."7?7 We analyze the properties of these trivial fixed
points in details in the following section.

The two phases are separated by a phase transition line
T!(p) which can be calculated accurately for a given pool
and its true value can be obtained by averaging over different
pools and taking the N—cc limit. The phase diagram is

shown in Fig. 2 in the plane 7"/J versus p. In the phase
diagram one may notice a reentrance in the regime p <0. At
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FIG. 2. (Color online) Phase diagram of the disordered Potts
model in the large-g limit on the diamond hierarchical lattice with
b=2 using the continuous boxlike distribution of Eq. (10). The criti-
cal behavior along the transition line between the paramagnetic and
the ferromagnetic phases is controlled by four different fixed points:
(i) at p=1 the pure systems fixed point (P), (ii) from p=1 to p
=puc (red line), the RF fixed point, (iii) at p=pyc the MC fixed
point, and (iv) for pyc<p=p, (green line) the zero-temperature
(Z) fixed point. Note that there is a reentrance in the phase diagram.

low temperatures the system is disordered due to frustration.
In the intermediate temperature regime there is an order-
through-disorder phenomenon and at high temperature the
system is again disordered due to thermal fluctuations. Simi-
lar features has been analyzed before for the g=3 model.”®

2. Phase-transition lines

The properties of the phase transition are different when
the disordering effect is dominantly of thermal origin (which
happens in the high-temperature part of the transition line) or
when it is dominantly due to frustration (which happens in
the low-temperature part of the transition line). At the bound-
ary of the ferromagnetic part of the phase diagram, the pure-
system fixed point at p=1 is unstable in the presence of any
amount of (ferromagnetic) disorder and the transition is con-
trolled by a new fixed point, the random-ferromagnet (RF)
fixed point. According to the phase diagram in Fig. 2, this
fixed point controls the phase transition even in a part of the
region where p<<0, up to a point [pyc,7.(pyc)]. Our nu-
merical studies indicate that at the RF fixed point the scaled
interface free energy is typically 7,=0(1). Below this tem-
perature, T’ <T(pyc), the phase transition is controlled by a
zero-temperature (Z) fixed point, the properties of which are
very similar to that in the g=3 model,'” in which it describes
the transition between the zero temperature spin-glass phase
and the paramagnetic phase. Our numerical studies show that
along the green line of Fig. 2 between MC and Z, as well as
at the Z fixed point the scaled interface free energy grows
with the size, L, as

I(L) = Lo, (12)

where the u; are O(1) random numbers and the droplet ex-
ponent is 6,>0. Finally at [pyc.T.(pmc)] there is a multi-
critical (MC) fixed point, analogous to the Nishimori MC
point in gauge-invariant systems.” On the phase diagram
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shown in Fig. 2, the coordinates of the fixed points are
(-0.212334; 0.353194) for the MC fixed point and
(-0.173626; 0.0) for the Z fixed point, but we did not study
the actual position of the RF fixed point. In the following
section we study the properties of the fixed points (except the
MC point) through numerical solution of integral equations.

IV. PROPERTIES OF THE FIXED POINTS

As shown in the numerical study of the previous section,
the system has two phases which are controlled by two
trivial fixed points and the phase transition line is controlled
by four different nontrivial fixed points. In each fixed point
there is a characteristic distribution of the scaled interface
free-energy parameters, P(I), which transforms under recur-
sion in Egs. (6) and (7) into P’(I). The transformation law of
the distribution function can be written in an explicit form,
due to the fact that the transformed variables, 7,,,, are ex-
pressed as a sum of a few /,, which are independent random
numbers distributed according to P(I). Thus we are looking
for the stable law of a nonlinear combination of random
numbers, which is different in the different fixed points.

A. Paramagnetic phase
The paramagnetic phase has a trivial limit distribution

P 4rq=I) since all parameters renormalize to zero.

B. Ferromagnetic phase

In the ferromagnetic phase /, grows without limit, thus
asymptotically for each bond I,,,,=1,,,> 1, and in Egs. (7)
the last equation holds. Consequently for b=2 we have

Loy = 1Y (min) + 1 (min), (13)

which leads the following relation for the distribution func-
tion:

I
P’(I)=J dxPy(x)Py(I - x) (14)
0
in terms of
Py(I) = 2P(1)Jm dxP(x), I1>1. (15)
I

Writing I as I+1, where I is the average value and I; the
fluctuating part, Eq. (14) leads to a renormalization relation

for the average values, (1)’ =2I. Defining the probability dis-
tributions for the fluctuating part as P(I,)=P(I+I,) and
P'(I,)=P'(2I+1,), they satisfy the following relation:

ﬁ’(11)=4f dxlﬁ(xl)ﬁ(ll 3)

[

Xf dy,P(y,) dzP(zy). (16)

1 I1=x

We have studied this equation numerically and found that the
fixed-point solution satisfies the relation
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FIG. 3. (Color online) Probability distribution of the scaled in-
terface free energy at the RF fixed point. At /=0 there is a delta
peak with strength, py=0.1280795, the function is nonanalytic at
I=1 and I=2.

~ 1~
P'(1) = PN (17)

with N=1.230091(1). Consequently in the ferromagnetic
fixed point the average value and the standard deviation of
the scaled interface free energy are related to the size L of the
system by

I~L% AI~L". (18)

Here the dimension of the interface is d;=d,;—1=1 and the
droplet exponent is 6=log(\)/log(2)=0.298765(1). Note
that the value of the droplet exponent is in agreement with
previous numerical studies for finite value of ¢.%? It is also
identical to the value obtained for directed polymers on the
same hierarchical lattice.>®

C. The REF fixed point

At the RF fixed point the iterated interface free energy
scales to the region /,,=0, therefore in the recursion relations
of Eq. (7) the second is irrelevant. The probability distribu-
tion P(I) satisfies different recursion relations at /=0 and in
the regions 0 </<1, 1<I<2, and /> 2. These relations are
obtained in Appendix A. At the fixed point the distribution
stays invariant, thus P’(I)=P(I). The fixed point distribution
obtained by numerical integration is shown in Fig. 3. Note
that 7 vanishes with probability p,=0.1280795 and the prob-
ability distribution is continuous but nonanalytic at /=1 and
1=2.

In order to calculate the thermal eigenvalue of the fixed-
point transformation we form the Jacobian J(x,y) through

functional ~derivation at the fixed point, J(x,y)
=6P'(x)/ 8P(y), and solve the eigenvalue problem
f dyJ (e )f () = N f0). (19)

In this way we have obtained the leading eigenvalue )\lfF
=1.6994583(1) and checked that AR <1 for i=2, e.g., the
correction-to-scaling eigenvalue is Ny =0.6378796(1).
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The thermal eigenvalue of the transformation is given by

Re_ 10g )\1le

Y log 2

=0.7650750(1) (20)

from which we deduce the correlation length critical expo-
nent vgp=1/yR'=1.307061(1). This exponent appears in the
scaling form of the average interface free energy I(7",L) in
the ordered phase for 7" <7 along the transition line in Fig.

2. We have
L |%
, } + oo (21)
Ean(T")

where d;=d,;—1=1 and the correlation length diverges as
E(T")~(T"=T.)""rF. Note that the fluctuation of the inter-
face free energy AI(T',L) grows with the droplet exponent 6
[see Eq. (18)] as

IT',L)= {

AI(T’,L):[ ]0+ s (22)

L
gvar(T’)
The associated correlation length &,,.(T") is proportional to
&,,(T"), thus there is only one length scale in the problem.
The situation seems to be different for finite values of ¢, in
which case two different correlation-length exponents are
obtained for the average and the fluctuating part of the inter-
face free energy, respectively.??

D. Zero-temperature fixed point

The Z fixed point is at zero temperature and here the
scaled interface free energy I, grows to infinity. Therefore

we use the reduced variable i,=1,/I, in terms of which the
renormalization group equations in Eq. (6) are modified as

b
Ly . (i)
':F =l 1Oy = 2 ¢[l£,ll)sl£,2)] (23)
i=1

n
with a,,,;=1,,,/1, and

0 if i, <0
A, iD= = e I e+ Epin <O and iy, >0

Lmin if imax + imin >0
(24)

In agreement with the phase diagram in Fig. 2 these equa-
tions have two trivial fixed points corresponding to the fer-
romagnetic phase when p>p, with «,— b and to the para-
magnetic phase for p<p, in which case «,—0. The
nontrivial fixed point at p=p, where a,— a, governs the
zero temperature transition.

The probability distribution I1(i) satisfies different rela-
tions for i <0 and i >0, as well as at i=0. The corresponding
integral equations are presented in Appendix B. We have
integrated these equations numerically and found that, at the
Z fixed point, the probability distribution I1(i) transforms as

I (i) = o, 11(3) (25)

with a,=1.10661(1). Consequently, the droplet exponent at
the zero temperature transition [see Eq. (12)] is given by
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FIG. 4. (Color online) Probability distribution of the scaled in-
terface free energy, i=1/1, at the Z fixed point, as well as along the
green line of Fig. 2 between MC and Z. At i=0 there is a delta peak
with strength, m,=0.000158, the function is nonanalytic at i=0.

_log ay
‘T log 2

=0.14615(1). (26)

The probability distribution at the fixed point is shown in
Fig. 4. We have calculated the Jacobian at this fixed point,
too. Like in Eq. (19), from the corresponding eigenvalue
problem we have deduced the leading eigenvalue )\f
=1.49314(1) which gives the thermal exponent

yZ=.57835(1) (27)

and the correlation-length exponent v,=1/ y,Z =1.72906(1).
In the ferromagnetic phase the average interface free-
energy scales along the green transition line in Fig. 2 as

d.Y
[T

with d;=d,;—1=1. Similarly, the fluctuation of the interface
free energy has the scaling form

IT',L)= (28)

! LH
M= e e 2
Note that these scaling relations differ from those at the RF
fixed point; see Egs. (21) and (22), respectively. The finite-
size behavior of these modified forms with &L)~L is in
agreement with Eq. (12). The correlation lengths &, and &,,,
diverge as 7" — T with the same critical exponent v7.

E. The MC fixed point

To complete our study we list here the properties of the
MC fixed point, which has been obtained numerically using
the pool method. At the MC point, the interface free energy
is found to be an O(1) random number, the distribution of
which is shown in Fig. 5. Both negative and positive cou-
plings are involved in the distribution and the average value
of the interface free energy as well as its fluctuations are
larger than at the RF fixed point. In the vicinity of the MC
point, the scaling of the interface free energy takes the form
given in Egs. (21) and (22). The divergence of the correlation
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FIG. 5. (Color online) Distribution of the interface free energy
at the MC point as calculated by the numerical pool method. The
green (red) symbols are for n=12 (n=10) iterations. A small frac-
tion ny=0.0057 of the samples have zero interface free energy.

length can be analyzed assuming the presence of a multipli-
cative logarithmic correction. The numerical data seem to be
consistent with the scaling combination

&) ~ (¢ In* r)~"mc (30)

with k= 1.5 and ry;c=3.61 for the average as well as for the
standard deviation.

V. DISCUSSION

We have studied the random Potts model in the large-g
limit with such type of disorder which includes both the
random (nonfrustrated) ferromagnet as well as the frustrated
spin-glass regime. The model is considered on the diamond
hierarchical lattice, on which the Migdal-Kadanoff renormal-
ization is exact. First we used the numerical pool method to
determine the phase diagram. It consists of a paramagnetic
phase and a ferromagnetic phase, separated by a transition
line which is controlled by four fixed points. This structure
of the phase diagram is very similar to that found numeri-
cally for the +J three-state Potts model in two dimensions'”
although in our model the zero-temperature spin-glass phase
is absent.

The state of this random system is shown to be uniquely
determined by the distribution of the scaled interface free-
energy, P(I). The renormalization group transformation is
written in the form of integral equations for P(I) and we
have studied the properties of its fixed points by numerical
integration. Mathematically the above problem is equivalent
to find the stable law of nonlinear combination of random
numbers.

In the random ferromagnetic phase the probability distri-
bution is analogous to that of directed polymers.>® For the
lattice with b=2 the droplet exponent is exactly the same in
the two cases. The nontrivial fixed points governing the
properties of the phase transition have different scaling prop-
erties, which are summarized in Table 1.

We note that at the RF fixed point the correlation-length
exponent vgp corresponds to a mostly thermal scaling field,
whereas at the Z fixed point v, is mainly due to a disorder-

PHYSICAL REVIEW B 80, 134201 (2009)

TABLE 1. Scaling behavior of the average interface free energy,
I, and its fluctuations A, as a function of the linear size, L, in the
ferromagnetic and paramagnetic phases and at the different fixed
points: P (pure system); RF (red line between P and MC in Fig. 2);
MC; and Z (green line between MC and Z in Fig. 2). The values of
the correlation-length critical exponent are also indicated. At the P
fixed point the transition is of first order.

1 Al v
Ferro L% LY
Para 0 0
P b/(2b-1) 0 1/d
RF o(1) o(1) 1.31
MC o(1) o(1) 3.61
Z L% L% 1.73

like scaling field. In the large-g limit, the same correlation
length exponent governs the scaling form of both the average
and the fluctuation part of the interface free energy.

Our results are obtained strictly in the large-¢g limit and
our analysis is mainly done for a diamond hierarchical lattice
with b=2. Here we comment on possible extensions of our
study in three directions. (i) For finite, but not too large val-
ues of ¢ the phase diagram is similar to ours, for example,
the SG phase appears only for g values which are not too far
from two. The critical exponents are expected to have cor-
rections in powers of 1/g. (ii) One can repeat the calculation
for larger values of b, which corresponds to a larger effective
dimensionality. However the integral equations for the prob-
ability distribution P(I) become more and more complicated:
P(I) is a piece-wise function with more and more different
intervals of definition. (iii) Finally, the calculation can be
extended to other quantities such as the interface energy and
the magnetization. For these quantities, however, one should
work with conditional probabilities, which will result in even
more complicated equations.
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APPENDIX A: INTEGRAL EQUATIONS AT THE RF
FIXED POINT

The probability distribution at this fixed point is a piece-
wise function which satisfies different relations in the regions
0<I<1,1<I<2,and I>2, respectively. It has a delta peak
at /=0 with strength p,.

The strength of the delta peak renormalizes as

po="Pq (A1)

in terms of
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1 1-1
Py=2py—pe+ J dIP(I) f dxP(x). (A2)
0 0
In the region 0 </<<1 we have the relation
1
P'(I)=2PyP (1) + f dxP(x)P(I-x) (A3)
0

with

1 o
P(I)= 2f dxP(x)P(I+1—-x)+ 2P(I)f dxP(x),
(I+1)2 1

0<I<1. (A4)
In the region 1 </<<2 we have the relation
-1
P’([)=2POP2(1)+f del(X)Pz(I—x)
0
1
+f dxP(x)P(I - x), (A5)
-1

where the auxiliary function P,([) is defined in Eq. (15).
Finally for />2 the renormalization reads as

1
P,(I) =2POP2(1) +f d.xPl()C)P2(I—.X)
0

-1
+ f dxP5(x)Po(I — x). (A6)

1
APPENDIX B: INTEGRAL EQUATIONS AT THE Z FIXED
POINT

The probability distribution at the Z fixed point is a piece-
wise function which satisfies different relations in the regions
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i<0 and i>0, respectively. It has a delta peak at i=0, with
strength 7y, which renormalizes as

m =113 (B1)
in terms of
0 2
Iy =2py—pj + U dil'[(i)} ) (B2)
In the region i <0 we have the relation
1 i
— 11" (i) = 21111, (i) + f dxIT; ()T, (i — x)
a —00
0
+f dxIT; ()T, (i — x) (B3)

in terms of

—o0

dxIT(x) + 2H(i)f® dxIl(x), i<O0

(B4)
and
I,(i) = 21’[(1’)[00 dxIl(x), i>0. (B5)
Finally, in the region i >0, we have the relation
il_[’(i) =2I1,I1,(i) + f“‘ dxI1, ()1, (i — x)
+ fi dxIT,(x)IT,(i — x). (B6)
0
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